Table of Contents Understanding Chronic Venous Disease (CVD) Venous Anatomy Pathophysiology of CVD **Treatment Modalities** RF Ablation – Venclose™ System ### Venous Disease Affects Millions of Lives 2020 U.S. Prevalence of Selected Chronic Diseases (Millions)* CVD is a progressive disease. Without treatment, signs and symptoms may worsen.⁷ BD-77819v2 7 Eberhardt RT. Raffetto JD. Chronic venous insufficiency. Circulation. 2014;130(4):333-346. ^{*} Age ranges differ for prevalence population based on disease state, rates reported for years ranging from 2015 to 2020. ¹ Alzheimer's Association. 2020 Alzheimer's Disease Facts and Figures. Alzheimers Dement. 2020;16(3):391-460. ² American Heart Association, Heart Disease and Stroke Statistics-2020 Update, Circulation, 2020;141:e139-e596. ³ American Cancer Society. Cancer Facts and Figures 2020. Atlanta: American Cancer Society; 2020. ⁴ Yost ML. United States Critical Limb Ischemia by Rutherford Category Prevalence and Markets in Patients and Limbs. Beaufort, SC: The Sage Group 2017. ⁵ Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020. ⁶ Yost ML. Chronic Venous Disease (CVD): Epidemiology, costs, and consequences. Beaufort, SC: The Sage Group 2016. ### Chronic Venous Disease Prevalence & Stats - An estimated 175 million Americans are affected by CVD in the U.S.¹ - Risk of CVD increases with age, but can begin as early as adolescence² - Visible venous disease is far more than a cosmetic problem^{1,3} CVD represents a significant and growing **need** within our health care system. The annual medical cost of venous disease is estimated at \$30-\$90 Billion in the U.S.¹ ### Venous Ulcer Prevalence & Stats In the U.S., 4.8 million people are estimated to suffer from venous ulcers with direct medical costs representing about \$38 billion per year.¹ Venous leg ulcers are estimated to recur in 60%-70% of patients⁴ ### Incidence of New Venous Ulcer Cases #### U.S. Incidence of Major Chronic Diseases (Millions) At **2.0 million** the annual number of new venous ulcer cases exceeds that of other chronic diseases including the 1.7 million new cases of all cancers combined and diabetic foot ulcers at 1.0 million new cases⁵ ¹ American Cancer Society. Cancer Facts & Figures 2016. Accessed September 2016, at http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016. ³ Nehler MR, Duval S, Diao L, et al. Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population. J Vasc Surg. 2014;60(3):686-695.e2. doi: 10.1016/j.jvs.2014.03.290 ⁴ American Diabetes Association. Statistics about Diabetes. Accessed September 2016, at http://www.diabetes.org/diabetes-basics/statistics. ⁵ Yost ML. Chronic venous disease (CVD): Epidemiology, costs, and consequences. Beaufort, SC: The Sage Group; 2016. ## Chronic Venous Disease Risk Factors^{1,2} # Signs and Symptoms of CVD¹ - Varicose veins or spider veins - Heaviness, aching, tightness or fatigue - Discomfort, pain or swelling - Restlessness or muscle cramping - Numbness or itching - Skin texture or color changes - Ulcer or wound Images courtesy of Matthew Wise, MD (Advanced Vein Center, Orange, CA) # Venous Pathophysiology Venous reflux occurs when the valves stop working properly and allow blood to flow backward and pool in the lower leg veins. Without treatment, signs and symptoms may worsen. CVD can develop into a more serious form of vein disease called chronic venous insufficiency (CVI) that includes leg swelling, skin changes and, in severe cases, ulcerations.¹ #### Healthy Valves Blood moves in one direction - up the legs to the heart #### Diseased Valves Blood leaks back through the diseased valves ## Great Saphenous and Small Saphenous Vein #### **GSV** - The longest vein in the body - Typically runs a superficial subcutaneous course from mid thigh to knee - Closely associated with saphenous nerve below mid-calf #### SSV - Begins posterior to the lateral malleolus - Travels up calf between two heads of gastrocnemius muscle - May have thigh extension - Usually drains into the Sapheno-popliteal Junction (SPJ) ### **Perforator Veins** Presence of an active or healed ulcer is a potential indicator of incompetent perforator veins ¹ Society for Vascular Surgery/American Venous Forum (SVS/AVF) clinical practice guidelines for care of patients with chronic venous ulcer currently define a pathologic perforator as having a "diameter of >3.5 mm and >500 milliseconds of retrograde flow"¹ These guidelines recommend ablation of pathologic perforator veins when located beneath or associated with potential ulcer beds in **lipodermatosclerosis** (C4b), healed ulcers (C5), or active ulcers (C6)¹ ### **CEAP Classification for CVD** Clinical, Etiologic, Anatomic, Pathophysiologic¹ - No visible or palpable signs of venous disease - Telangiectasias or reticular veins - c2 Varicose veins - (C2r) Recurrent varicose veins - C3 Edema ### **CEAP Classification for CVD** ### Clinical, Etiologic, Anatomic, Pathophysiologic¹ - Changes in skin & subcutaneous tissue secondary to CVD - (C4a) Pigmentation or eczema - (C4b) Lipodermatosclerosis or atrophie blanche - (C4c) Corona phlebectatica - C5 Healed venous ulcer - C6 Active venous ulcer - C6r Recurrent venous ulceration Image courtesy of Dr. Steven Elias ## CEAP Classification for CVD¹ ## CEAP Classification for CVD¹ Image courtesy of Dr. Steven Elias ## Arterial Ulcers vs. Venous Ulcers | | Arterial ¹ | Venous ¹ | |-------------------|---|--| | Cause | Insufficient blood supply to area, causing ischemia (tissue death) | Pooling of blood causing increased pressure in the veins | | Risk Factors | Vascular insufficiency, uncontrolled blood sugars in people
with diabetes melitus. limited joint mobility or mobility
problems, improper footwear | Varicose veins, deep vein thrombosis, incompetent valves,
muscle weakness in the legs, immobility, pregnancy | | Skin Changes | Shiny, thin, flaky, hair loss, rubor (pinkish red) | Hyperpigmented (hemosiderosis—purple, dark reddish brown),
telangiectasias, thickening (lipodermatosclerosis), peri-wound
maceration, scaling/crusting | | Location | Foot more often than leg | Lower leg, almost never foot | | Laterality of Leg | Usually lateral | Usually medial | | Wound Edges | Well defined | Irregular, poorly defined | | Wound Bed | Pale or necrotic | Dark red, fibrinous slough | | Odor | If infected (gangrene) | Usually none | | Pain (in ulcer) | Uncommon unless infected or acute ischemia | Uncommon unless infected | | Edema | No | Yes | ## Arterial vs. Venous Ulcer Differences ### Arterial Image courtesy of Dr. Miguel Montero-Baker Image courtesy of Dr. Eric Secemsky ### **V**enous # Patient Assessment & Diagnosis If a patient has suspected or clinically evident chronic venous disease, they should be referred to a physician experienced in treating venous reflux disease for proper evaluation, testing and diagnosis.¹ - Current general health condition - Past medical history - Symptoms - Physical exam - Ultrasound study accurately diagnoses venous reflux disease¹ - Evaluate for venous occlusion or thrombus¹ - Map the course of the incompetent superficial veins¹ ### **Current Treatment Modalities** #### Conservative Therapies¹ - Exercise - Leg elevation - Compression stockings - Unna boot - Venoactive drugs ### Surgical Stripping¹ #### Thermal Ablation¹ - Radiofrequency (RF) ablation - Laser ablation #### Non-thermal, Non-tumescent¹ - Mechanochemical - Sclerotherapy - Cyanoacrylate adhesive ### First CVD RF Innovation In Over a Decade Non-surgical, catheter-based thermal ablation \rightarrow Fibrotic seal \rightarrow Vein occlusion # BD Venclose™ RF Ablation System Treating the spectrum of superficial venous reflux disease with the latest RF technology on the market.* RF technology has been established as a treatment option for refluxing veins for more than **20** years. ## Venclose™ RF Ablation System Advantages - While various treatments are available for CVD, RF ablation has wide acceptance and is the predominant approach used for the treatment of refluxing veins in the U.S.¹ - RF ablation technology can potentially reduce postoperative pain and bruising in patients compared to vein stripping or laser therapy treatment.² - The Venclose™ RF Ablation System is a single-use device. It is not a reprocessed catheter or a permanent implant. ## Venclose™ RF Ablation Catheter Venclose™ RF Ablation Catheter is a minimally invasive treatment solution for patients with superficial vein reflux. Venclose[™] RF Ablation Catheter is the **only** RF device with dual heating lengths to treat long and short refluxing segments with one catheter.¹ ### Radiofrequency Energy Delivered by the Venclose™ RF Ablation Catheter ### Venclose™ RF Ablation Catheter Video #### Patients Treated with the Venclose™ RF Ablation Catheter * After treatment image was taken 2 weeks post-op ## Venclose Maven™ Perforator Catheter Venclose Maven[™] Perforator Catheter is a minimally invasive treatment solution for patients with perforator and tributary vein reflux. The device is unique by providing physicians circumferential resistive heating in one treatment cycle as compared to 4 treatment cycles required for bipolar electrodes. ### Treating Late-Stage Venous Disease with the Venclose Maven™ Perforator Catheter Catheter is placed in the perforating vein Heat is delivered to the incompetent perforator vein and causes the diseased vein to shrink Catheter is easily removed and blood flow is redirected to healthy veins ### Venclose Maven™ Perforator Catheter Video #### Patients Treated with the Venclose Maven™ Perforator Catheter ### Patient Outcomes with RF Ablation While individual results may vary, patients can typically resume normal activities within a few days of an RF ablation procedure. # RF Insurance Coverage - Generally, health insurers provide coverage for thermal ablation venous procedures. - Insurance providers typically require certain preauthorization steps. - It is important for the patient to review the requirements with their physician and insurance provider prior to treatment. ### What Can You Do - Spread CVD awareness in the community - Detect early signs and symptoms of CVD - Identify the right multi-disciplinary team - Build a wound treatment & management plan - Help improve quality of life for your patients Working together across a <u>collaborative team</u> of specialists will ensure patients get the best treatment during various stages of their CVD journey. ### Resources Available for Your Patients #### Chronic Venous Disease Risk Factors Healthy lea veins contain valves that open and close to assist in the return of blood to the heart. Sometimes, the valves become Long periods of standing damaged or diseased and can no longer close properly. As a result, blood can leak back through the valve and pool in the lower leg veins. This can lead to chronic venous disease (CVD).1 Venous Anatomy Healthy Valves Diseased Valves BACK OF LEG Clinical Classifications Discomfort, pain, or swelling Restlessness or cramping Numbness or itching Skin texture or color change How can vein treatment with the Venclose™ RF Ablation Catheter help me? The Venclose" System leverages radiofrequency (RF) technology that's been established as a CVD treatment option for more than 20 years. · Minimally invasive, outpatient procedure Small catheter entry site · Primary treatment choice by physicians Once treatment is completed successfully, blood flow will naturally reroute towards the nearby deeper and Before Treatment After Treatment healthier veins to return to the heart. Ask your doctor if vein treatment using the Venclose" RF Ablation Catheter may be right for you. CVD is a progressive disease. Without treatment, signs and symptoms may worsen.⁸ At 2 million, the number of new venous ulcer cases exceeds that of other chronic diseases including the 1.7 million new cases of all cancers combined.⁶ BD bd.com BD. Tempe, AZ, USA, 1 800 321 4254 Venclose" # Venclose[™] RF Ablation Catheter Indication for Use: The Venclose $^{\mathbb{M}}$ EVSRF Catheter is intended to be used with the Venclose $^{\mathbb{M}}$ digiRF $^{\mathbb{M}}$ Generator as a system. The Venclose $^{\mathbb{M}}$ EVSRF catheter is intended for endovascular coagulation of blood vessels in patients with superficial vein reflux. Contraindications: The Venclose™ EVSRF catheter is contraindicated in patients with thrombus in the vein segment to be treated. Warnings: Potential impact to active implanted medical devices located nearby the intended treatment location in the lower limbs has not been evaluated. It is recommended not to coil the EVSRF connector cable directly above active implanted medical devices. The Venclose™ system is not intended to be used with magnetic resonance imaging. Thermal treatment of the vein may damage adjacent sensory or motor nerves. Risk of damage is greater near the calf or if no local anesthetic is used around the treated vein. Treatment of a vein section closer than 1 cm to the skin may result in a skin burn. Direct external compression may reduce the distance between the vein and skin. Treatment of a vein located near the skin is not protected with fluid infiltration. Care should be taken to preserve adequate blood circulation, especially for patients with documented peripheral arterial disease. Catheter is for single patient use only. A contaminated catheter may lead to illness or death of the patient. Cleaning damage to the catheter may lead to ineffective treatment or injury. Venclose™ will not be responsible for any direct, incidental or consequential damages or expenses resulting from reuse of the catheter. Transcutaneous ultrasound imaging is recommended to confirm and maintain device tip and heating element position in the target superficial vessel. Do not place heating element in a vein valve (for the purpose of restoring valve function), a perforating or non-superficial communicating vein, or in the deep venous system. If electromagnetic interference associated with stray energy from the digiRF™ System is encountered, reposition the imaging system and/or the digiRF™ Generator to eliminate such interference. See the "Separations Distances" table in Section 12 in the digiRF™ System is encountered, or without perivenous fluid infiltration. Flammable agents for cleaning, disinfecting, or as solvents of adhesives shall be allowed to evaporate before using the Venclose™ system. Interference caused by use of the Venclose™ syst Precautions: Store in a dry, cool place. Do not bend catheter shaft into a tight radius; kinking of the shaft may render the catheter inoperable. To prevent damage to the guidewire, ensure that the guidewire does not protrude from the catheter in a dry, cool place. Do not begin treatment at the heating element location during treatment as it will cause the guidewire to become stuck within the catheter lumen. Do not advance the catheter shaft in inconsistent effectiveness and/or may deamed the verificial pelement may result in inconsistent effectiveness and/or may deamed the verificial pelement that will actively heat remains inserted a length of at least 2.5 cm from the vein access point. The portion of the catheter shaft within 2.0 cm of the heating element may exceed 41°C during treatment. Testing of this region has shown that a maximum temperature of 42°C can be reached. If the generator stops treatment due to improper heating, remove the catheter and inspect. Replace the catheter if damage is found. Failure to respond to advisory indicators can result in damage to the catheter. If using direct external compression, do not compress the skin closer than 1 cm to the heating element or a skin burn may occur. Do not read with the number of the catheter and respond to advisory indicators can result in damage to the catheter and respond to advisory indicators can result in damage to the catheter and respond to advisory indicators can result in damage to the catheter and respond to advisory indicators can result in damage to the catheter and respond to advisory indicators can result in damage to the catheter and respond to advisory indicators can result in damage to the catheter and respond to advisory indicators can result in damage to the catheter and respond to advisory indicators can result in damage to the catheter and respond to advisory Potential Adverse Events: Potential adverse events include but are not limited to the following; vessel perforation; skin discoloration; nerve injury; temporary paresthesia; thrombosis; deep vein thrombosis; hematoma; infection; skin burn; pulmonary embolism; and pain. #### Venclose Maven™ **Perforator Catheter** Indication for Use: The Venclose Mayen^{\mathbb{M}} Catheter is intended to be used with the Venclose \mathbb{M} digiRF \mathbb{M} Generator as a system. The Venclose Mayen \mathbb{M} Catheter is intended for endovascular coagulation of blood vessels in patients with perforator and tributary vein reflux. Contraindications: The Venclose Maven™ Catheter is contraindicated in patients with thrombus in the vein segment to be treated. Warnings: Potential impact to active implanted medical devices located nearby the intended treatment location in the lower limbs has not been evaluated. It is recommended not to coil the Venclose Maven™ connector cable directly above active implanted medical devices. The Venclose™ system is not intended to be used with magnetic resonance imaging. Thermal treatment of the vein may damage adjacent sensory or motor nerves. Risk of damage is greater near the calf or if no local anesthetic is used around the treated vein. Treatment of a vein located dose to the skin surface may result in a skin burn. Ensure that the proximal end of the heating element is at least 0.5 cm from the skin. Do not treat within the deep venous system. Ensure that the distal tip of the catheter is greater than 0.5 cm from the deep venous system. Treatment of a vein located near the skin surface may result in a skin burn if the skin is not protected with fluid infiltration. Care should be taken to preserve adequate blood circulation, especially for patients with documented peripheral arterial disease. Catheter is for single patient use only. A contaminated catheter may lead to illness or death of the patient. Cleaning damage to the catheter may lead to ineffective treatment or injury. Venclose™ will not be responsible for any direct, incidental or consequential damages or expenses resulting from reuse of the catheter. Transcutaneous ultrasound imaging is recommended to confirm and maintain device tip and heating element position in the target vessel. Do not place heating element in a vein valve (for the purpose of restoring valve function) or in the deep venous system and/or the digiRF™ Generator's User Manual for further information. Nerve injury may occur from thermal damage to adjacent sensory nerves. Risk of nerve injury may be higher with treatment at or below the calf, or without perivenous fluid infiltration. Flammable agents for cleaning, disinfecting, or as solvents of adhesives shall be allowed to evaporate before using the Venclo Precautions: Store in a dry, cool place. Do not bend catheter shaft into a tight radius; kinking of the shaft may render the catheter inoperable. To prevent damage to the guidewire does not protrude from the catheter lumen to the heating element location during treatment as it will cause the guidewire to become stuck within the catheter lumen. Do not leave the guidewire within the catheter lumen at the heating element location during treatment as it will cause the guidewire to become stuck within the catheter lumen. Do not leave the guidewire within the catheter shaft within 2.0 cm of the heating element may result in inconsistent effectiveness and/or may damage the catheter shaft within 2.0 cm of the heating element may exceed 41 °C during treatment. Testing of this region has shown that a maximum temperature of 42 °C can be reached. If the generator stops treatment due to improper heating remove the catheter and inspect. Replace the catheter if damage is found. Failure to respond to advisory indicators can result in damage to the catheter. If using direct external compression, do not compress the skin closer than 0.5 cm to the heating element or a skin burn may occur. Do not re-advance the catheter and re-treat an acutely treated vein section or it may increase risk of embolism. Do not treat with the heating element with the heating element of skin access or a skin burn, catheter damage or sheath damage may result. The vein wall may be needed over the aneurysmal segment, additional compression may be needed over the aneurysmal segment, additional compression may be needed over the aneurysmal segment, additional compress the vein over the full length of the heating element may result in inconsistent effectiveness and/or possible catheter damage. Place monitoring electrodes as far as possible from the Venclose[™] catheter when the digiRF[™] Generator and physiological monitoring equipment are used simultaneously on the same patient. Do not use needle monitoring electrodes. Use monitoring systems incorporating h Potential Adverse Events: Potential adverse events include but are not limited to the following: vessel perforation; skin discoloration; nerve injury; temporary paresthesia; thrombosis; deep vein thrombosis; hematoma; infection; skin burn; pulmonary embolism; pain. Please consult product labels and instructions for use for indications, contraindications, hazards, warnings, and precautions. BD, the BD logo, digiRF, Venclose and Venclose Maven are trademarks of Becton, Dickinson and Company or its affiliates. All other trademarks are the property of their respective owners. © 2023 BD. All Rights Reserved. © 2023 Illustrations by Mike Austin.